
 - 1 -

Activities associated with a software build, continuous
integration, and release program

Jim Kowalkowski

1 Introduction
The purpose of this document is to describe the software deployment and quality
assurance tasks that are carried out by SCD staff for SCD developed products or
on behalf of the user community. This includes software products that are used by
our customers, used within our products, and produced, supported or maintained
by SCD affiliate organizations. Each activity will contain its description and a
summary of how it performed now. This document will communicate the current,
ongoing, and future needs for these tasks and provide a common understanding
of what the tasks are. The intended use for this document is to help determine
what tasks, if any, should be centralized and managed across projects to form a
coherent, on-boarded program. It will also be used to aid in assigning priority to
each of the items.
All of the tasks described in this document have been loosely called development
services and support systems. Many of these activities seem to best fit into the
area of Software Deployment, although some could be described as assist ser-
vices and tools within the Software Development Life Cycle. The Deployment
Activitiesi that will be explored here include release, install and activate, update,
and version tracking. The roles that are frequently associated with these activities
include build-release engineers, release managers, and deployment coordinators.
The Software Development Life Cycleii phases that will be explored here include
Integration and Testing, and Acceptance, Installation, Deployment.
This document is organized into four major sections. The Overview section is a
high-level description and view of the major functions that ought to be performed
by a new program broken down into distinct areas. The new program will be re-
ferred to throughout this document as the Build, Continuous Integration and
Release program, or BCIR. The Current situation section describes how and
where many of the major functions are carried out now. The Proposed program
section identifies objectives for the new BCIR program and highlights some of the
needs and changes to the set of customers for this program. Finally, the Opera-
tional scenarios section begins to describe in more detail the major functions
performed in each of program areas, with the focus being development of use
cases that show the relationship and use within each area. There is a large
amount of information that could not be incorporated into this document. The End
notes section has pointers to relevant documents and web pages that describe
the current situation. The endnote document xiii has a fairly complete terminology
section that is relevant here and is not repeated.

 - 2 -

2 Overview
While reviewing the integration, build, and release functions that SCD is currently
performing within various projects and experiments, an obvious breakdown into
areas was apparent. An area represents a distinct line of work with specific goals
and objectives. Each area is further broken down into the aspects of facilities,
services, and projects. Below is a description and summary of each of the identi-
fied areas that can form a new BCIR program.

2.1 Areas
Release management: This area is primarily concerned with providing the release
management and product packaging and building services and tools for groups
developing and using software infrastructure. The services include packaging for
external products.
Continuous integration: This area focuses on access and use to the Jenkins build
services and associated database, testing interfaces, and web summary facilities
that exist. This includes assistance with integrating software product builds and
unit / integration test suites with Jenkins, and supporting the facilities and software
infrastructure to permit the running of a product build within this context. This in-
cludes building development and integration candidate releases for products on-
demand, triggered, or periodically. It is recognized that this system relies on the
build system that is part of the software package.
Product distribution: This area focuses on product distribution through central web
and file system services. It organized and allows users to access versions of full
binary and source distributions for experiments across platforms and build config-
urations.
Validation control (future): This area focuses on testing and quality assurance. Of
particular interest is the control and coordination of performance and validation
runs. This is a newly proposed area. Performance evaluation for both checking
accuracy and speed both fit into the testing area and can be triggered by the re-
lease building (including development and integration builds). Testing of LArSoft
would likely be a first candidate here. Future candidates for this area are the
Geant4 performance runs and the GENIE validation runs. Both of these systems
have high demands that will almost certainly exceed the capacity and scope of
the current tools and resources, requires interactions with GRID or other batch-
oriented computational resources.

2.2 Aspects
Almost all the areas have some aspect of facilities, services, and projects. The
facilities are the resources (computation and software packages) necessary to
make an area work. The services configure the facilities to make them useful for
the customers, and in this case, actually utilize the resources according to user
needs. The services also aid in the support of the tools that are used within each
of the areas. The projects contribute to the development for the software tools
owned and maintained within BCIR. The projects come and go as features and
software releases are needed.

 - 3 -

2.3 Future considerations
It is reason to consider adding documentation generation services to the areas in
the future. The purpose of this is to add, just like testing stages in a build, auto-
matic documentation generation for software products that are using the
continuous integration system. Two examples of products that could be included
here for support and configuration are doxygen and LXR covering documentation
embedded in source files and source code navigation.

2.4 Management
A key objective of this program is to consolidate resources for activities that are
now spread across many projects within and outside of SCD. Organizing the as-
pects into the areas defined above allows for a clean and clear separation of
responsibilities. There is also a natural flow from left to right through the areas as
a product becomes ready for use by a customer. The coordinator assigned to run
this program will act as a central point for gathering and meeting requirements,
measuring and reporting progress towards goals, and strive for commonality in
these areas amongst all customers.

2.5 Summary
The aspects and areas are summarized in a Table 1.

Release
Management
(Common build,
packaging & release
management)

Continuous
Integration
(Common fa-
cilities for build
and testing)

Product
Distribution
(Common
distribution
site)

Validation
Control
(Common tools
for launching and
summarizing val-
idation runs)

 • Workers
• Servers
• Jenkins
• Web tools
• Database

• CVMFS
• Web Site
• Storage

• Future servers
• Storage
• Workflow tools

Facilities
(computation
resources
and software
packages)

• Experiment produc-
tion release control

• SCD production
release control

• External product
packaging

• Product dependen-
cy management

• Tools configuration

• Experiment
Integration

• Tools config-
uration

• Interface
support

• Filesystem
maintenance

• Tools support
• Web index

management
• Distribution

manifests

• Future monitor-
ing and
configuration

• Workflow and
GRID integrate

Services
(configure
and utilize
facilities,
support soft-
ware)

• cmake external
• MRB
• UPS packaging
• Production build

tools
• Distribution build

tools

• CI test inter-
face

• Database
• web summary

• Production
distribution
tools

• Web man-
agement
tools

• Future interfac-
es

• Coupling tools

Projects
(development
of the soft-
ware tools
owned and
maintained
within BCIR)

 - 4 -

Table 1
The table shows a proposed breakdown of four identified major areas under a
new BCIR program (first row), and the three major aspects of facilities, services,
and projects (the last column). The cells of the table describe common example
activities that are performed and the systems and software that are affected for a
given area and aspect. There exists a natural relationship between each of the
area. Many of the use-cases flow from left to right, with release management driv-
ing continuous integration, causing distributions to be posted, triggering
validation.

3 Current situation
SCD is currently providing support for one or more of the areas defined above to
many projects and experiments. There are little to no formal agrees on support
levels for any of these areas. Some of the work is done as “best effort”. Much of
work in the tools and release areas is done without much oversight and organized
management. Services in these areas are provided at levels to keep customers
happy. There is not much organization to promote common solutions for each of
the areas. Individual projects develop minimal infrastructure to meet there needs
a given moment.

3.1 IF release and packaging services
The SSI team currently maintains releases of several SCD-developed products.
Notable ones are the art suite, the LArSoft suite of packages, artdaq_core (a sub-
set of artdaq), and nutools. In addition, experiment software releases for mu2e
and g-2 are maintained. The maintenance includes all the external packages that
are used by these software systems. Each release of these products is qualifiediii,
meaning that there is more than one supported build configuration depending on
the experiment, the platform, and environment under which it will be used. The
qualifiers define the build configuration and affect the externals that will be used
to compile and link the applications and libraries. The art suite build includes sev-
eral lower-level SCD-developed products: message facility, fhiclcpp, cetlib, and
cpp0x.
Useful information about some of the key SCD product builds can be obtained
with the UPS depend commands on supported systems. Running these com-
mands shows how a release is constructed and viewed: it is a collection of
versioned products tagged, built, and tested together to form a consistent whole.
Lower-level dependent packages are built and installed first, and later packages
use the installed versions of these packages. Each package knows the depend-
ent package versions that are compatible with it.

 - 5 -

-bash-4.1$ ups depend nutools v1_07_00 e6:prof
-bash-4.1$ ups depend nutools v1_07_00 debug:e6
-bash-4.1$ ups depend larsoft v03_04_03 -q e6:prof
-bash-4.1$ ups depend larsoft v03_04_03 -q debug:e6
-bash-4.1$ ups depend art v1_12_04 -q e6:nu:prof
-bash-4.1$ ups depend art v1_12_04 -q e6:prof
-bash-4.1$ ups depend art v1_12_04 -q debug:e6:nu
-bash-4.1$ ups depend art v1_12_04 -q debug:e6
-bash-4.1$ ups depend artdaq_core v1_04_06 -q e6:prof:s5
-bash-4.1$ ups depend artdaq_core v1_04_06 -q debug:e6:s5

Each of these is used as an external within an experiment. A complete build of
these products requires consistency across all dependence packages, including
the externals. A key feature is that underlying packages only need to be rebuilt if
they are changed (new version is available), otherwise the existing binary distribu-
tions are reused. The cet-is wiki contains a dependency diagram snapshotiv of
most of the products that are currently packages and build by SCD.
The build system used for LArSoft, art (along with underlying packages), and
artdaq_core is cmake coupled with cetbuildtools and cetpkgsupport. Mu2e and g-
2 share a binary distribution (the mu2e one). Mu2e uses scons as its build sys-
tem.
Relocatable UPSv is used to manage built software products and their relation-
ships. This is a simplified use of the full UPS/UPD that permits binary
distributions of tarballs to be downloaded to destination computers and installed
without root access. SSI occasionally submits patches and bug reports to the
UPS support team to improve this operating mode.
MRB is a tool built alongside LArSoft to simplify the building of multiple products
pulled from separate repositories. The original design and requirements came
from discussion with g-2 and the art team. G-2 has since adapted MRB for their
use. The requirements are covered in the SSI-produced requirements document
(xiii).
Maintenance and ownership of packaged externals is handled in an ad hoc way.
All externals are wrapped for distribution in a UPS package. The product devel-
opment teams will typically introduce a new external to be added to the
dependency chain of their component. The build personal will take over packag-
ing and versioning responsibilities of the new product. The external wrapping
process requires tools that aid in UPS packaging of an external. A new version of
an external can be introduced by the build support personal because it contains
useful fixes and updates or because it uses newer versions of lower-level prod-
ucts that the a distribution needs (for example a gcc is needed by mu2e, and
therefore it is useful to upgrade boost). A new external can be introduced by the
build personnel if it deemed good to have as a common tools and requested by
several groups (Qt is a recent example of this kind of external). Platform additions
and upgrades usually require several external upgrades. Developers or user that
want to make use of the new platforms typically donates these.

 - 6 -

3.2 Build services and the Continuous Integration System
The build resources used are the art development cluster head node
cluck.fnal.gov (SLF6) for most products and the Jenkins continuous integration
system. The packages are built and distributed for SLF5, SLF6 and OSX. They
are known to work on similar Linux flavors (CentOS and Ubuntu). The complete
list of experiments and projects that utilize the CI system can be seen on their
main web sitevi.
LArSoft is heavily using the Continuous Integration facilities. Results and status
of build stages can be seen on the main web site. Two important projects are ad-
dressing missing pieces within the system, mainly long-term results storage using
a database, and build/test test summary results displays through a web site. The
early development for these features being carried out in the context of LArSoft,
and they have collected some requirementsvii. The prototype for the results dis-
play can be seen on the webviii. LArSoft performs nightly and continuous
development builds. It is not clear how nightly builds are used by experiments.
Changes in LArSoft heavily affect both uBooNE and LBNE because of their de-
pendence and reliance on it. Currently there is one main branch that is used for
releases and it uses a tagged release of art.
Mu2e is finalizing plans for integrating their software build into the Jenkins sys-
tem. They will likely have nightly builds and will want to run the their test suite.
They will continue using the scons build system internally.
LBNE is utilizing the CI system. They provide a nightly build, but it is not widely
used. They have their own release manager. An alternative build infrastructure is
being finalized and is ready for demonstration.
Minerva is using BuildBot to orchestrate the building of their Gaudi based soft-
ware package. They can move to the central Jenkins system and want their
validation steps run automatically.
GENIE provides a nightly build using Jenkins. The artdaq team is building most of
packages they own. The Darkside-50 team is also building releases.
BNL has been offering to help in the area of build coordination tools, including
product packaging and distribution tools. The help might extend into cmake as a
standard build system. The demonstration work they have completed will need to
be reviewed and service level agreements will need to be discussed and negoti-
ated before deciding how to move down this path.

3.3 Distribution services
Each built product is installed. The standard installation area is a relocatable UPS
product tree. Each installed product is formed into a distribution tarballix and
placed onto the distribution server scisoft.fnal.gov so that it is available for down-
load. Complete distributions such as mu2e, LArSoft, artdaq_core, and art
development contain rules for downloading a complete set of package tarballs. A
tarball manifest is put together for each major distribution. The manifest lists all
the packages that are needed to form a complete distribution. A “pull products”
script is also prepared. Its purpose is to take a manifest and download the missing

 - 7 -

packages for a distribution into a user’s installation area and unwind them. Each
major distribution is available within a directory on the Scisoft server and acts as
an index into the complete set of available packages. The current distribution
bundles are available at bundlesx. See the manifest files for each of the bundles
to the list of package versions that it contains. The full list of available packagesxi
is available at the scisoft site. Some of the requirements and organization of the
scisoft site are available on the redmine wikixii.
Build and release requests are done on-demand. Releases are triggered by com-
pletion of a feature set or by an upgrade to one or more dependent products.

3.4 Tools maintenance and support
The software products that are used for all aspects of release management and
distribution are very important for the projects within SCD and the experiments
that use them. As mentioned above, the ownership of these products is spread
across several groups and projects. Requirements for many of the tools in this ar-
ea that are currently in use have been accumulated into a document titled
Requirements for Software Product Building and Management.xiii This document
has a fairly comprehensive terminology section that also defines many of the
terms used here. The document concentrates on the requirements for tools that
are used for build, release, packaging, and distribution of software products.
The main SCD-developed products that satisfy many of these requirement in-
clude: cetbuildtools, ssibuildshims, pullproducts, cetpkgsupport, and MRB. Under
the covers these packages utilize git, cmake, make, and UPS.
There is another set of open source and licensed products that aid in develop-
ment, testing, and problem analysis. All of these packages require packaging and
upgrade maintenance. They are used in both the production and development
environments. The main tools are: totalview, allinea (profiler and debugger),
valgrind, and OpenSpeedshop. The main distribution mechanism for these prod-
ucts is UPS.

3.5 Validation
Geant4: performance runs are carried out regularly to measure changes in execu-
tion speed from point release to point release. The results are posted on an SCD-
hosted web sitexiv. They are collecting and storing system and application perfor-
mance measurements for representative Geant4 configurations. Fairly high
statistics are collected increase accuracy since sampling is used to gather the
performance data. There is a web interface for inspecting the collected data and
comparing it with previous runs. Changes in performance can be inspected down
to the function level of applications. Dedicated resources are needed for this op-
eration to minimize unwanted fluctuations in the performance measurements.
They are currently using the SSI development cluster for these runs and this has
been increasingly problematic because it is not a production resource. A request
is in the system for moving the running of the performance jobs to the Wilson
cluster. The Geant4 group has written requirements for the data collection and
processing.

 - 8 -

GENIE validation and testing stages are being designed and analyzed now. The
validation stages are going to need resources that are not provided through the CI
project. Large samples will be generated and analyzed by the validation steps.

4 Justification for changes
Good support for the BCIR areas covered in this document is essential for making
software products developed by SCD and affiliated experiments usable by our
community. This is especially true where produced software is shared amongst
experiments within and outside of Fermilab across more than one platform and
computing site.
Tools to support BCIR functions are developed, prototyped, or adopted as low-
level support infrastructure under a project. The CI database and web site is an
example under the LArSoft project and the cmake-based cetbuildtools is an ex-
ample under the art project. Support and maintenance is therefore mixed in with
development of the project itself. Requirements, operations, support, and mainte-
nance are not formally in project scope. Operations (using the tools) is carried out
by members of the same development team. Unfortunately this situation makes it
difficult to prioritize and manage development of the mainstream product and in-
ternal infrastructure required by stakeholders. It also puts as addition burden on
the project team, which now has multiple levels of support and development to
address and juggle. A second disadvantage of this organization is that many of
the infrastructure tools are useful outside of the project that is generating them,
and visibility to those needs is limited. The result is that reduced sharing of the
tools.
As sharing of facilities, tools, and services for the areas defined here become
more widespread, nesting the maintenance, development, and support within
specific projects becomes unmanageable. Individual projects start diverging from
the shared products as soon as problems or missing functionality are found.
When underlying support infrastructure sharing is involved, the line between in-
scope and out-of-scope work is fuzzy, making prioritization between well-defined
project work and the extra tools work difficult.
A problem occurred recently between MRB and G-2 that illustrates some of the
problems outlined here. MRB behavior was changed. The change caused fail-
ures in the G-2 build that took a few days to clear up. The build system tools set
policies for code structure that must be maintained. Changes to these policies
can cause many issues in the customer code, and therefore need closer man-
agement and control over changes and releases.
Distributed development, especially outside Fermilab, has increased dramatically
over the past year. The number of platform is going up and we are moving well
beyond SLF 5/6. In addition, we are anticipating that the diversity of architectures
and system configurations will be increasing as many-core and multi-core energy-
saving cores become mainstream. As a result, many things will need more atten-
tion, such as excellent test facilities and services, automation of builds across
platforms and architectures, and collecting of performance monitoring data.

 - 9 -

5 Proposed program

5.1 Objectives
The goal is to establish a program that takes ownership of the areas described in
the overview section of this document. The program will be the home of expertise
in build system infrastructure and release management and under it will be main-
tain recommended products and procedures. Initially the first three areas of
release management, continuous integration, and product distribution will need to
be moved into this program. The fourth area of validation control can be added as
additional requirements are gathers and a project plan is created. The four areas,
as shown in the table of the overview section, can be viewed as forming a con-
nection from left to right. Release management typically triggered builds and
testing on the continuous integration system, which in turn causes release candi-
dates to be packaged and posted on the distribution server. The posted release
candidates can then be used to trigger extensive validation suites.
Requests should be handled through the services aspect using any of the stand-
ard issue tracking systems. Support staff for the provided services across all
areas will be responsible for interacting with facilities. They will also control the
project aspect to initiate enhancements to features, provide for larger sets of
changes to tools, and manage tool releases. A stakeholder community will help to
prioritize changes to tools, policies, and supported packages and platforms.
It is desirable to farm out some of the tools support and development, with a pri-
mary goal being to offload work to collaborators outside FNAL. Procedures need
to be included for contributing to the BCIR products and services.
It is also highly desirable to move the development and support of CI-related func-
tions for tracking status through databases and web site development for viewing
build and test results into this new program. This movement will help maximize
the sharing of the developed tools amongst all interested projects and experi-
ments. The CI test running interface should also be included here because its
utility extends beyond liquid argon-based experiments.

5.2 Notes about identified customers
Artdaq: The project team would like to be able to schedule releases as needed.
They are very interested in automating the running of an integration test that op-
erates using more than one node, verifying that the distributed processing is
working as expected. Part of the artdaq toolkit (artdaq-core) is already built and
releases within SSI. This is the part that is shared with offline code. There will be
a large number of qualified builds for a given release due the variety of supported
networking hardware and support packages.
Artdaq-demo: This is a package built on top of artdaq and supported by that pro-
ject team. They want to be able to schedule a release and distribution when
needed. This might be the environment under which artdaq itself is tested. It is
desirable to have the testing include both an Ethernet network (simpler) and In-
finiband network (more specialized).

 - 10 -

Art: The project team wants to be able to trigger a tagged release and unit / inte-
gration tests run using the CI system (across all valid qualifier combinations).
They also want to build and test for other Linux systems, including CentOS, Ub-
untu, and Debian. The SSI department is already helping with support of art
releases and distributions.
Synergia: The project team is currently using a project-built packaging system
called Contractor. They would like to move to a common supported toolkit for re-
leases and external product management. They currently to not have a
production release. They have an extensive test suite that would fit nicely into the
CI system. The package dependencies for Synergia are shown in the web page
referenced in the endnotes. The difficult part of support this project is the diverge
platform support, which includes: blue/Q, SLF5, SLF6, Fedora, Ubuntu, New Cray
at NERSC called Cori, Summit at Oak Ridge (Nvidia / IBM). frequency - no binary
or standard builds. Currently developers and users do independent builds and
the MPI libraries need special care because they are platform specific. On Mac
OS X they use homebrew for almost all of the external products. On SLF many
things come from standard system RPMs. For NERSC systems, they desire to
utilize the standard modules product for binary product packaging, which will let
users set up a version and use it on a system. A consistent whole is needed for
all dependent products and this can be a difficult task that will need to be worked
out. Ideally they want RPMs to install Synergia on Linux systems that support it.
They would also like a binary install of releases on their primary FNAL cluster tev.
They want nightly builds in Jenkins, and would be willing to utilize the scisoft dis-
tribution sight. There will be a stable and development release supported, and will
want to declare that a tag and release is necessary which will form the develop-
ment release.
CosmoSIS: The project is included in the dependency diagrams available in the
endnotes. This project has many of the requirements and restrictions of Synergia
regarding the platform support (no Bluegene support) including the need for MPI.
The two projects also share many external packages. Currently product man-
agement is handled through relocatable UPS. The project team wants to release
management support through this program. They also want test suite integration
that runs on the CI system, along with specific test sites, such as Midway at Uni-
versity of Chicago. They want to use the continuous build features of Jenkins,
triggered by commits to the central repository.
LSST DESC: Currently the needs for this project are mainly following CosmoSIS.
They will diverge when specific packages need to be turned into managed prod-
ucts to be used on FNAL resources, such as the LSST Data Management
Software Stack.
LArSoft: This project is already a large user of the areas supported by this pro-
gram and this will continue.
Mu2e and G-2: Both of these experiments rely on current SSI services for releas-
es and build tools support and this will continue. They will be moving further

 - 11 -

toward complete CI integration, which includes running their integration tests, and
hopefully parts of validation into the future.
GENIE: This project is already using the CI system for builds. Discussions have
started about how the CI system might be used to aid in the running of GENIE
validation. The resource load for this operation is large and will need to extend
out to the GRID. It may be possible to utilize parts of the CI system database-
tracking infrastructure (currently being developed in the context of LArSoft) to rec-
ord progress and state of GENIE validations.
Geant4: Within FNAL, this project will look similar to GENIE. The FNAL Geant4
team already had performance and validation systems and tasks defined. It may
be possible to reuse parts of the Geant4 performance tracking infrastructure with-
in the CI system.
Main experiments not yet included in this section: DarkSide, uBooNE, NOvA, and
DES.

6 Operational scenarios
Table 2 lists several of the functions that can be performed under the services
and projects aspects of the four defined areas.

Release
Management

Continuous
Integration

Product
Distribution

Validation
Control

• Tag release
• Configure

ACLs
• Initiate build
• Update Jenkins

configuration
• Complete re-

lease
• Initiate packag-

ing
• Package exter-

nal
• Accept external
• Configure build

• Integrate test
& build sum-
mary

• Integrate build
• Initiate build
• Check state
• Check results
• Check test

summary
• Adjust authority

• Configure
ACLs

• Retrieve bun-
dle

• Post packages
• Update index
• Build manifest
• Define bundle

• Initiate valida-
tion

• Check status
• Configure re-

sources
• Adjust authen-

tication
• View summary
• Transfer sum-

maries

Services

• Maintain de-
velopment
make system

• Maintain make
conductor sys-
tem

• Main build co-
ordination
system

• Maintain CI test
interactions

• Maintain con-
figuration of
Jenkins

• Maintain DB
• Main web

summary

• Maintain prod-
uct pull

• Maintain build
coordinator

• Maintain doc-
umentation

• Maintain inter-
faces

Projects

Table 2
Full use cases that touch functions from each of the service areas will be availa-
ble on the public redmine wikixv.

 - 12 -

7 Not covered in this document
Contained here is a list of topics that need to be discussed, but are not covered in
this document:

• Packaging and distribution of server products, such as the postgres server
• Management of Open Source licensing, outside repository management, and

redmine accessibility issues

8 End notes

i http://en.wikipedia.org/wiki/Software_deployment
ii http://en.wikipedia.org/wiki/Systems_development_life_cycle
iii https://cdcvs.fnal.gov/redmine/projects/cet-is-public/wiki/AboutQualifiers
iv Snapshot of most package dependencies, including Synergia:
https://cdcvs.fnal.gov/redmine/projects/cet-
is/wiki/DependencyViewSnapshot17122014
v https://cdcvs.fnal.gov/redmine/projects/cet-is-public/wiki/AboutUPS
vi https://buildmaster.fnal.gov/
vii https://cdcvs.fnal.gov/redmine/projects/lar-ci/documents
viii http://dbweb4.fnal.gov:8080/LarCI/app/view_builds/index
ix https://cdcvs.fnal.gov/redmine/projects/cet-is-
public/wiki/Get_binary_distributions
x http://scisoft.fnal.gov/scisoft/bundles/
xi http://scisoft.fnal.gov/scisoft/packages/
xii https://cdcvs.fnal.gov/redmine/projects/cet-is-private/wiki/SciSoftRequirements
xiii https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5380
xiv https://oink.fnal.gov/perfanalysis/g4p/
xv https://cdcvs.fnal.gov/redmine/projects/cet-is/wiki/UseCasesBcir27122014

